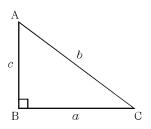
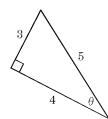

Name:

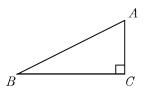
Date: ____


- 1. *P* is a point on the terminal arm of an angle θ in standard position. Suppose $\theta = -750^{\circ}$. Where is *P* located?
 - A. in quadrant I
 - B. in quadrant III
 - C. in quadrant IV
 - D. on the positive y-axis
- 2. If $\cot \theta > 0$, then the terminal side of θ may lie in what quadrant(s)?
 - A. I and II
- B. I and III
- C. II only
- D. II and IV
- 3. Which of the following angles is coterminal with -610° ?
 - A. 20°
- B. 70°
- C. 110°
- D. 610°
- 4. What is the reference angle of -820° ?
 - A. -60°
- B. 10°
- C. 60°
- D. 80°
- 5. Express $\sin 280^{\circ}$ as a function of a positive acute angle in terms of $\sin x$.
 - A. $-\sin 80^{\circ}$
- B. $\sin 80^{\circ}$
- C. $-\sin 10^{\circ}$
- D. $\sin 10^{\circ}$
- 6. Express $tan(-310^{\circ})$ as a function of a positive acute angle in terms of tan x.
 - A. $\tan 50^{\circ}$
- B. $-\tan 40^{\circ}$
- C. $-\tan 50^{\circ}$
- D. $\tan 40^{\circ}$

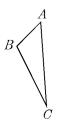
- 7. Express $\cos(-50^{\circ})$ as a function of a positive acute angle in terms of $\cos x$.
 - A. $\cos 50^{\circ}$
- B. $-\cos 40^{\circ}$
- C. $-\cos 50^{\circ}$
- D. $\cos 40^{\circ}$
- 8. Write an expression to represent any angle coterminal with the angle 170° (*n* is an integer).
 - A. $360^{\circ} + n(170^{\circ})$
- B. $170^{\circ} + n(360^{\circ})$
- C. $170^{\circ} + n(180^{\circ})$
- D. $n(240^{\circ})$
- 9. If the point P(-4, 1) is a point on the terminal side of angle θ in standard position, then what is the exact value of $\csc \theta$?
- 10. If the point P(-4, 1) is a point on the terminal side of angle θ in standard position, then what is the exact value of $\csc \theta$?
- 11. If the point P(-4, 1) is a point on the terminal side of angle θ in standard position, then what is the exact value of $\csc \theta$?
- 12. Find the numerical value of sin 49° 23′.
- 13. Express $\cos 295^{\circ}$ as a function of a positive acute angle.
- 14. Which of the following ratios is equivalent to $\frac{1}{\cos}$?
 - $A. \quad \frac{opposite}{hypotenuse}$
- B. $\frac{\text{hypotenuse}}{\text{adjacent}}$
- C. $\frac{\text{hypotenuse}}{\text{opposite}}$
- D. $\frac{\text{opposite}}{\text{adjacent}}$


- 15. Given the triangle shown, which of the following
 - A. $\sin B = \frac{c}{h}$
 - B. $\cos A = \frac{c}{h}$
 - C. $\tan A = \frac{b}{a}$
 - D. $\sin B = \frac{b}{c}$

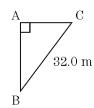
- Which of the following statements is incorrect for $\triangle ABC$?
 - A. $\sin A = \frac{c}{b}$
 - B. $\tan A = \frac{a}{c}$
 - C. $a^2 + c^2 = b^2$
 - D. $\tan C = \frac{c}{a}$

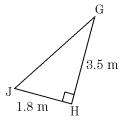


- 17. Given the following triangle, $\cos \theta =$ ____.



- 18. If $\sin \angle B = \frac{4}{5}$ and $\cos \angle B = \frac{3}{5}$, what is $\tan \angle B$?
- A. $\frac{4}{3}$ B. $\frac{3}{4}$ C. $\frac{7}{5}$ D. $\frac{1}{5}$


19. In the triangle below, $\sin B = \frac{8}{17}$. Find $\cos A$.


- B. $\frac{17}{15}$
- C. $\frac{8}{15}$ D. $\frac{15}{17}$
- For the triangle shown, $m \angle B = 90$ and $\cos C = \frac{15}{17}$. What is $\cos A$?

- B. $\frac{8}{15}$ C. $\frac{15}{17}$ D. $\frac{8}{17}$
- If $\sin \theta = -\frac{2}{5}$ and $\tan \theta > 0$, then what is the $\cos \theta$ expressed as an exact value?
- 22. In $\triangle ABC$, calculate $\angle C$ to the nearest degree given that $AC = 23.0 \,\mathrm{m}$.

- 23. In the triangle, determine $\angle J$ to the nearest degree.
 - A. 27°
- B. 31°
- C. 53° D. 63°

Problem-Attic format version 4.4.239

© 2011-2015 EducAide Software Licensed for use by Bobbie Bie Terms of Use at www.problem-attic.com

		Trig Practice	02/05/2016	
1. Answer: Objective:	C F.TF.2		15. Answer: Objective:	D G.SRT.6
2. Answer: Objective:	B F.TF.2		16. Answer: Objective:	A G.SRT.6
3. Answer: Objective:	C F.TF.2		17. Answer: Objective:	B G.SRT.6
4. Answer: Objective:	D F.TF.2		18. Answer: Objective:	A G.SRT.6
5. Answer: Objective:	A F.TF.2		19. Answer: Objective:	A G.SRT.7
6. Answer: Objective:	A F.TF.2		20. Answer: Objective:	D G.SRT.7
7. Answer: Objective:	A F.TF.2		21. Answer: Objective:	$-\frac{\sqrt{21}}{5}$ G.SRT.7
8. Answer: Objective:	B F.TF.2		22. Answer: Objective:	B G.SRT.8
9. Answer: Objective:	√17 F.TF.2		23. Answer: Objective:	D G.SRT.8
10. Answer: Objective:	√17 F.TF.2		·	
11.	(-			

 $\sqrt{17}$

F.TF.2

0.7591

F.TF.2

F.TF.2

G.SRT.6

В

 $\cos 65^{\circ}$ or $\sin 25^{\circ}$

Answer: Objective:

Objective:

Answer:

Objective:

Objective:

12. Answer:

13.

14. Answer: